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ABSTRACT

Voice over IP(VoIP) is widely used in today’s communication, VoIP is a methodology that

able to converts analog voice signals into digital data packets and support real-time, two-way

transmission of conversations using Internet Protocol. Despite of the fact that VoIP technology

have greatly developed since the earliest design, it still su↵er from the common problem that

a↵ect Internet security: hacker. Currently Timing-based attack is the most famous attack

method on VoIP. Timing-based tra�c analysis attacks mainly based on packet inter-arrival

time. Attackers are able to analyze the packet sending time intervals and export user’s talking

pattern. Finally, attacker can identify the user by comparing the exported talking pattern with

the talking pattern in their databases. Therefore, to protect user’s identity, we propose a new

application to hide user’s talking pattern.

In this thesis, we address issues related to tra�c analysis attacks and the corresponding

countermeasures in VoIP tra�c. We focus on a particular class of tra�c analysis attack, timing-

based correlation attacks, by which an adversary attempt to analyze packet inter-arrival time

of a user and correlate the output tra�c with the tra�c in their database. Correlation method

that is used in this type of attack, namely Dynamic Time Warping(DTW) based Correlation.

Based on our threat model and known strategies in existing VoIP communication, we develop

methods that can e↵ectively counter the timing-based correlation attacks. The empirical results

shows the e↵ectiveness of the proposed scheme in term of countering timing-based correlation

attacks.

Our experimental result showed that our application is able to hide user’s identity in VoIP

communication, with a few modifications in the sending process.
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CHAPTER 1. INTRODUCTION

1.1 Research Motivation

Voice over IP (VoIP) communications are continuing gaining popularity due to their cost

savings and rich features. By using this type of technology, users are able to use the telepone

calls over the Internet and do not need to pay for any extra cost except for the Internet

access fees. Because of the popularity of VoIP, a increasing number of Internet hackers started

to focus on attacking VoIP users. In the past, the most famous type of attack is based on

packet size. In this type of attack, attackers are able to analyze packets information and grab

the information they want. In order to prevent this type of attack, numerous e↵orts such as

SRTP [2] and ZRTP used in Zfone [18] have been put into securing VoIP communications.

However VoIP communications are still vulnerable to tra�c analysis attacks based on VoIP

tra�c patterns. Through the tra�c analysis attacks, attackers can identify speeches [14],

identify languages used into the VoIP communications [15], and identify speakers [16]. Thus,

VoIP tra�c patterns based attacks are aim to identify user’s identity: their language, their

topic, etc. Currently, the most common way to hide user’s identity in the Internet is using

anonymous communication softwares, like Tor [11], however, these softwares still potentially

su↵er from VoIP tra�c patterns based attacks since it is designed for hiding tra�c information

rather than VoIP tra�c pattern.

This project studies user identification attacks and the corresponding countermeasures in

VoIP tra�c. With rapid growth of the Internet as a tool of communication and information

sharing, VoIP technology has been widely applied in Internet communication application soft-

ware, such as Skype, X-Lite, Google Hangouts, etc. However, these VoIP Applications can

potentially be attacked by many methods. In the past, the most common way to attack VoIP
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network tra�c is based on packet size, which are now perfectly modified by constant bit rate

codecs, which generates the same packet size. Thus, attackers needs to find another way to hack

the network communication, so packet inter-arrival time becomes the new target for attackers.

VoIP tra�c pattern based attacks di↵er from tra�c information based attacks by their

attack target. Tra�c information attacks are focus on grab packets information send by their

target user and tra�c pattern based attacks are focus grab packets sending time send by

their target user. Recent research has proved that packet information can be successfully hide

by Constant Byte Rate which generate same packet size, thus, it is di�cult for attacker to

analyze packet by their size. However, there is no securing action to hide tra�c pattern, which

defined as a series of talk spurts1 and silence gaps2. From Dr. Zhu Ye’s Paper ”On Privacy of

Encrypted Speech Communications” [17], attackers are able to ”detect speakers of encrypted

speech communications with high accuracy based on traces of 15 minutes long on average.” So

it is significant for us to find a way to fix this defect before this technology can move forward.

In this thesis, we propose a pattern hiding approach to mitigate tra�c analysis attacks

on VoIP communications. The approach hides tra�c patterns by adding dummy packets,

dropping VoIP packets, and delaying VoIP packets. The approach optimizes pattern hiding in

terms of dissimilarity from the original tra�c pattern and the optimization is under constraints

on dummy packet rate, VoIP packet drop rate, and VoIP packet delay.

We formally modeled the behavior of an adversary who launches tra�c analysis attacks. In

order to successfully identify the user who is sending packets through the VoIP Application,

the correlation techniques must accurately measure the similarity of user’s output tra�c and

adversary’s sample tra�c. Correlation method that is used in this type of attack, namely DTW

based Correlation. DTW based Correlation is used to measure the similarity of two tra�c with

di↵erent length. Moreover, we developed a pattern hiding module and measure the e↵ectiveness

in countering tra�c analysis attacks.

1
Talk spurt is a continuous segment of speech between two silence intervals

2
Silence gap is the time intervals between two talk spurts
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1.2 Thesis Organization

The rest of this thesis organized as follow: Chapter 2 covers the literature survey on existing

researches on VoIP, anonymous network and pattern hiding. Chapter 3 defines the formal prob-

lem statement. Chapter 4 introduces the design of our pattern hiding module and its detailed

implementation. Chapter 5 set up a series experiment based on our pattern hiding module and

analyzes the experiment result. Chapter 6 we makes conclusion based on experiment result

and discuss the limitation. Chapter 7 summarizes the thesis and future works.
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CHAPTER 2. REVIEW OF LITERATURE

Internet communication security become increasingly important with the popularity of VoIP

software. A lot of e↵ort had been put on this area: anonymous communication, voice tra�c

camouflage, etc. Our goal is to design a pattern hiding module that can help increase the

security of VoIP communication. So this chapter, we review previous work that is related to

VoIP and its security technologies.

Anonymous communication has been proved very useful for hiding user’s identification from

outside observer. The most famous anonymous application on web browser Tor [5] can provide

the user relatively safe web browsing by distributing user’s transactions over several places on

the Internet. But we note that Tor does not directly provide anonymity service for a VoIP

communication, thus, attacker still have a greater chance to identify users.

2.1 Potential Attacks on VoIP

Skype, as one of the most popular VoIP service provider is able to protect users’ privacy by

using some unique features, such as: strong encryption, proprietary protocols, unknown codecs,

dynamic path selection, and the constant packet rate. However, a number of researchers have

shown that there still possible for attackers to compromise users’ privacy according to a new

tra�c analysis attacks which is based on application-level features extracted from VoIP call

traces[16]. Some recent research shows that when the audio is encoded using variable bit rate

codecs, the length of encrypted VoIP packets can be used to identify the phrase spoken within

a call and the language of the conversation.[14] [15]

In Zhu Ye’s paper: ”Tra�c Analysis Attacks on Skype VoIP Calls” [16], author proposed a

class of tra�c analysis attacks that can extract feature of VoIP call traces. In this type of attack,
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adversary will first collect Victim Alice’s VoIP call traces. Then the adversary can extracts

application-level features of Alice’s VoIP calls and trains a Hidden Markov Model(HMM) with

these extracted features. Finally, the adversary is able to calculate likelihood of the call being

made by Alice.

In Fabian Monrose’s paper: ”Spot Me if You Can: Uncovering Spoken Phrases in Encrypted

VoIP Conversations”[14], author proposed a technique that use the lengths of encrypted VoIP

packets to identify the phrases spoken with a call. In this technique, even if the audio is encoded

using variable bit rate(VBR), the average identification accuracy can reach 50% and 90% for

some phrases.

In Fabian Monrose’s paper: ”Language Identification of Encrypted VoIP Tra�c: Alejandra

Y Roberto or Alice and Bob?”[15], author proposed a techniques that used the lengths of

encrypted VoIP packets to identify the conversation language in VoIP communication. The

research experiment result with 2066 native speacker of 21 di↵erent languages shows that

encrypted VoIP communication tra�c can be identify with very high accuracy.

2.2 Pattern Hiding Techniques

Some of the countermeasure methods have been developed for hiding network tra�c. For

example, NetCamo [8] is able to camouflage network tra�c.par In [5], Tor proved to be a

useful for web browsing anonymous, but it is not able to e↵ectively hide voice tra�c. In paper

[16][14][15], the length of encrypted VoIP packets are being used to identify users and languages.

NetCamo [8] provide a useful way to camouflage the tra�c to avoid these identifications. In

our paper, we focus pattern tra�c hiding in VoIP communications without compromising the

real-time requirement.

In speech communications, an analog voice signal is first converted into a voice data stream

by a chosen codec. Typically in this step, compression is used to reduce the data rate. The

voice data stream is then packetized in small units of typically tens of milliseconds of voice,

and encapsulated in a packet stream over the Internet.

Silence suppression, also called voice activity detection (VAD), is designed to further save

bandwidth. The main idea of the silence suppression technique is to disable voice packet
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transmissions when silence is detected. To prevent the receiving end of a speech communication

from suspecting that the speech communication stops suddenly, comfort noise is generated

at the receiving end. Silence suppression is a general feature supported in codecs, speech

communication software, and protocols such as RTP.

A silence detector makes voice-activity decisions based on the voice frame energy, equivalent

to average voice sample energy of a voice packet. If the frame energy is below a threshold, the

voice detector declares silence.

Hangover techniques are used in silence detectors to avoid sudden end-clipping of speeches.

During hangover time, voice packets are still transmitted even when the frame energy is below

the energy threshold. Traditional silence detectors use fixed-length hangover time. For modern

silence detectors such as G.729B, the length of hangover time dynamically changes according

to the energy of previous frames and noise.

(a) Voice Signal Waveform

(b) Packet Train

Figure 2.1: An Example of Silence Suppression

Figure 2.1 shows an example of the silence suppression. Figure 2.1.(a) shows the waveform

of a sheri↵’s voice signal extracted from a video published at cnn.com [4]. Figure 2.1.(b)
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shows the packet train generated by feeding the voice signal to X-Lite [1], a popular speech

communication tool. From Figure 2.1, we can easily observe the correspondence between the

silence periods in the voice signal and the gaps in the packet train. The length of a silence period

is slightly di↵erent from the length of the corresponding gap in the packet train because of the

hangover technique. The on-o↵ pattern shown in Figure 2.1.(b) can leak sensitive information.
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CHAPTER 3. PROBLEM DEFINITION

Figure 3.1: Pattern Hiding Module

The formal problem statement can be formulated as follows: design a module to hide the

on-o↵ tra�c pattern shown in Figure 2.1. As shown in Figure 3.1, the pattern hiding module

is installed on the same computer running VoIP software. The module intercepts VoIP packets

generated by the VoIP software, add timing perturbation to hide tra�c pattern, and then send

perturbed tra�c to the Internet.

From previous researches, a lot of e↵ort had been put on securing speech communication, so

we assume the VoIP tra�c is encrypted with one of the secure versions of the RTP protocol such

as SRTP [2] or ZRTP used in Zfone [18] to protect confidentiality of speech communications.

We also assume VoIP packets are of the same size because of the following reasons:

1. Most codecs used in current speech communications are CBR codecs1.

2. During encryption, speech packets can be padded to a fixed length.

1
Variable bit rate (VBR) codecs are primarily used for coding audio files instead of real-time speech commu-

nications [13, 3].
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We assume attackers uses following speaker detection methods: detect speaker with a spe-

cific encrypted speech communication, such as the online course instructor, e-conference meet-

ing speaker. In this project, we assume the interest speaker is Alice. Before apply speaker

detection on Alice, attacker, we call it Eve, will first collect encrypted speech communications

data send by Alice in advance so that Eve can compare the data he got with these encrypted

speech communication data and see if they are match.

In order to define adversary’s power, we also make following assumptions:

1. We assume an adversary is able to eavesdrop VoIP tra�c to and from the computer

running VoIP software.

2. Since VoIP packets are encrypted and of the same length, the adversary attempts to

disclose sensitive information through timing of VoIP packets.

To sum up, In this project, we assume that the adversary uses a classical timing analysis

attack, which summarized as follow:

1. The adversary observe user?s output network tra�c, collects the inter-arrival times of

the packet and generate user?s talk spurts and silence gap with optimal threshold.

2. To maximize adversary?s power, we assume that he can catch all the tra�c from his

observed user.

3. The optimization model?s techniques and strategies are known to the adversary. This

is a typical assumption in the study of security systems. Above two assumptions create

worst case scenario in terms of security analysis.

4. The adversary cannot correlate input talk spurts and silence gaps to output talk spurts

and silence gaps. Content and packet size correlation is prevented by encryption and

packet timing based correlation is prevented by batching.

5. Finally we assume that the specific objective of the adversary is to identify the user of

output tra�c.
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CHAPTER 4. METHODS AND PROCEDURES

4.1 Overview

The pattern hiding module is designed to hide the on-o↵ pattern in VoIP tra�c. We

quantify the hiding performance as the correlation between the on-o↵ pattern in the original

tra�c and the on-o↵ pattern in the perturbed tra�c. We denote the length of the ith talk spurt

and the ith silence gap in the original tra�c as xt
i

and xs
i

respectively. Similarly the ith talk

spurt and the ith silence gap in the perturbed tra�c can be denoted as yt
i

and ys
i

respectively.

So the on-o↵ patterns in the original tra�c and the perturbed tra�c can be denoted as X =

[xt1, x
s

1, x
t

2, x
s

2, · · · , xt
i

, xs
i

, · · · , xt
n

, xs
n

] and Y = [yt1, y
s

1, y
t

2, y
s

2, · · · , yt
i

, ys
i

, · · · , yt
n

, ys
n

] where n is the

number of talk spurts and silence gaps. The correlation between the on-o↵ patterns can be

written as:

D(X,Y ) =

nX

i=1

(xt

i

� x̄)(yt
i

� ȳ) +
nX

i=1

(xs

i

� x̄)(ys
i

� ȳ)

vuut
nX

i=1

[(xt

i

� x̄)2 + (xs

i

� x̄)2]
nX

i=1

[(yt
i

� ȳ)2 + (ys
i

� ȳ)2]

(4.1)

where x̄ =
P

n

i=1(x
t

i

+x

s

i

)
2n and ȳ =

P
n

i=1(y
t

i

+y

s

i

)
2n .

The goal of the module is to minimize the correlation defined in Equation 4.1. The time

perturbation to the tra�c can be adding dummy packets, dropping VoIP packets, and delaying

VoIP packets. Any of the timing perturbation techniques incur costs:

1. Adding dummy packets can increase bandwidth usage.

2. Dropping VoIP packets can degrade QoS of VoIP communications. QoS of VoIP commu-

nications is acceptable if the packet drop rate is less than 5%.

3. Delaying VoIP packets can increase the overall delay of VoIP packets and cause QoS

degradation of VoIP communications.
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Add Dummy Packets: When we add a packet, we will insert a dummy packet between

two VoIP packets, so that these packets can either generate two silence gaps instead of one.

(Because insert a packet in talk spurt will not change the pattern, here we assume all the new

packets are inserted during silence gap) or cover the silence gap. As Figure 4.1 shows, we have

two packets (Original Packet 1 and Original Packet 2) to be send and there is a gap between

these two packets. Now, we insets a new packet (Dummy Packet) between Original Packet 1

and Original Packet 2, thus, two new gap has been created or the original gap has been covered.

Either way, user?s talk pattern has been changed.

Drop VoIP Packets:When we drop a VoIP packet, we drop a packet to create ether a new

silence gap or a silence gap that is larger than the previous one. As Figure 4.2 shows, the

original data contains 3 packets (Original Packet 1, Original Packet 2 and Original Packet 3)

and 2 gaps between these 3 packets. New we dropped Packet 3, which also means we combine

two gaps into ones. If Original Packet 1, Original Packet 2 and Original Packet 3 are send out

during a talk spurt, this action will generate a new silence gap; if the original gaps already are

silence gaps, this action will combine this two silence gaps into a large silence gap. Either way,

this action will change the user?s talking pattern.

Delay VoIP Packets:When we delay a packet, we will hold the packet for certain period of

time before send it out, so that we can create a new silence gap or enlarge the original silence

gap. In Figure 4.3, it shows the original VoIP packet data: 2 packets and 1 gap. In the lower

half of the figure, it shows that Packet 2 has been moved to a further location in the timeline,

which enlarge the gap between Original Packet 1 and Original Packet 2. In this situation, it

will either generate a new silence gap or enlarge the original silence gap. Either way, this action

will change the user’s talking pattern.

So the module can be essentially formulated as an optimization problem: The goal is to

minimize the objective function defined in Equation 4.1. The constraints of the optimization

problem are the limit on the adding rate of dummy tra�c (denoted as lim
add

), the limit on the

dropping rate of VoIP packets (denoted as lim
drop

), and the limit on the delay to VoIP packets

(denoted as lim
delay

).
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Figure 4.1: Model for Add Dummy Packets

Figure 4.2: Model for Drop VoIP Packets

Recall that our applications objective is to minimize the correlation between input talk

spurts/silence gaps and output talk spurts/silence gaps. This could be achieved by adding

dummy packets into the normal tra�c, dropping actual packets from the normal tra�c and

delay original packets in the normal tra�c. Using these methods, we are able to generate a

modified output inter-arrival time, which are di↵erent from input inter arrival time. To find the

minimum correlation between input and output inter-arrival time, we have two options, first,

we can use mathematic correlation formula to make decision on add,drop and delay packet,

in our research, we used Pearson?s correlation coe�cient formula. Another method is using

dynamic time warping algorithm to find the optimal match between two given sequences with

certain restriction.
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Figure 4.3: Model for Delay VoIP Packets

The optimization has to run as an online algorithm as the input to the optimization such as

the on-o↵ pattern in the original tra�c is not known in advance. The online optimization starts

with replicating the first n� 1 talk spurts and silence gaps from the input of the module, i.e.,

the original tra�c, to the output of the module, i.e., the perturbed tra�c. Given the first n�1

talk spurts and silence gaps in both the input and the output of the module, the optimization

algorithm computes the optimal length of the nth talk spurt in the output. From then on, the

optimization computes the optimal length of the next talk spurt or silence gap in the output

based on the previous n � 1 talk spurts and silence gaps in the input and the output of the

module.

Since the optimization has to run as an online algorithm, the packet delay caused by the

optimization needs to be taken into account. For example, to compute the optimal length of the

ith talk spurt in the output tra�c, the optimization algorithm needs to know the length of the

corresponding talk spurt in the input tra�c. The optimization will not know the end of the talk

spurt until one packetization delay after the arrival of the last packet of the talk spurt, which is

approximately 20ms or 30ms for most codecs. Since the optimization also needs computation

time, the last packet of the talk spurt needs to be delayed at least for one packetization delay

and the computation delay of the optimization before a decision can be made for the packet.

The excessive delay is not acceptable for VoIP communications.
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To avoid the excessive delay, our optimization algorithm does not compute based on the

actual length of the current talk spurt or silence gap. Instead, the algorithm computes based

on the predicted length of the next talk spurt or silence gap.

Figure 4.4: Pattern Hiding Module

As shown in 4.4, the pattern hiding module has following three steps:

• The prediction step predicts the length of the next talk spurt or silence gap based on the

history of the on-o↵ patterns.

• The optimization step calculates the optimal length of the next talk spurt or silence gap

in the output tra�c based on the predicted length of the next talk spurt or silence gap.

• The compensation step computes compensation needed to achieve the optimal pattern

hiding because of prediction error. Randomization is also included in the compensation

step to randomize output tra�c and the randomization can make output tra�c traces

generated from the same input tra�c di↵erent from each other.

We describe the details of each step in the rest of this section.

4.2 Prediction Step

In this paper, we use a neural network to predict the length of the next talk spurt or

silence gap. Neural networks have been successfully applied to predict time series data such as

stock index [12] and solar activity [6]. The neural network used in this paper is the nonlinear

autoregressive network with exogenous inputs (NARX) model [9]. As shown in Figure 4.5, the
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NARX model used in this paper is a two-layer feedforward network with one hidden layer and

one output layer. In Figure 4.5, the prediction is on silence gaps and the past talk spurts are

used as the external input. When predicting length of talk spurts, past silence gaps are used

as the external input.

Figure 4.5: NARX Model Used to Predict Length of Silence Gaps (Xt: a vector of talk spurts,
Xs : avectorofsilencegaps.)

The input of this step is a neural network model trained with previous VoIP communication

traces. If we assume the index of the next talk spurt or silence gap is j, this step outputs xp,t
j

,

the predicted length of the next talk spurt, or xp,s
j

the predicted length of the next silence gap.

4.3 Optimization Step

Given the predicted length of the next talk spurt or silence gap in the input tra�c from

the previous step, the optimization step outputs the optimal length of the next talk spurt or

silence gap. Without loss of generality, we assume the input and output of this step are xp,s
j

,

the predicted length of the next silence gap in the input tra�c, and yo,s
j

, the optimal length of

the output tra�c respectively. The objective function is as shown in (4.2).

In (4.2), x̄ =
P

j

i=j�n+1 x
t

i

+
P

j�1
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s

i
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2n and ȳ =
P
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+
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+y

o,s

j

2n .

In the objective function (4.2), the only variable is yo,s
j

. Since the optimization is online,

all the lengths of the previous talk spurts and silence gaps are known.

The single-variable optimization problem can be solved with the classical approach based

on the derivative test. The solution of the optimization problem can be found in Appendix .
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(4.2)

To avoid repetition, we focus on the optimizing the length of the next silence gap only in

this subsection. The length of the next talk spurt can be optimized in the same way.

4.4 Compensation Step

The compensation step is designed for two purposes:

1. The optimization step is based on the predicted length of the next talk spurt or silence

gap and any prediction error can lead to performance degradation in pattern hiding.

This step is designed to compensate the degradation in hiding performance due to the

prediction error.

2. This step is also designed to add randomization in pattern hiding and the randomization

makes two traces of perturbed tra�c corresponding to the same original tra�c di↵erent.

The di↵erences can mitigate replay attacks by replaying the original tra�c.

There are four cases in the compensation steps. Without loss of generality, we assume the next

talk spurt or silence gap is the jth talk spurt or silence gap.

Recall that input tra�c are consists of talk spurts and silence gaps, thus, optimization can

be classified into two classes: talk spurt optimization and silence gap optimization. We will

see that di↵erent classes should have di↵erent optimization method. For both talk spurt opti-

mization and silence gap optimization, output value come up with two parts: (1) optimal value

calculated by Pearson’s Correlation Coe�cient Formula, called O and (2) makeup value,called

M , is generated by prediction error and random coe�cient, If we define predicted value which

generated by Optimization Model is P , Since both optimal value of talk spurt and silence gap

could be either grater than or equal to predicted value or less than predicted value, we can

divide each class into two subclasses. Based on these classes, we will discuss each in detail:
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Situation1: talk spurt optimization and optimal value O is grater than or equal to predicted

value P . As Figure 4.6 shows, with O and P given, actual talk spurt could end in following

three place: a1: less than both O and P ; a2: grater than P and less than O; a3: grater than

both O and P .

a1: if actual talk spurt end at a1, Optimization Model keeps padding to f1 = O �M . M is

generated by prediction error and random coe�cient, in this case, M = ✓(p � a1), where ✓ is

random coe�cient.

a2: if actual talk spurt end at a2, Optimization Model keeps padding to f2 = O +M . M is

generated by prediction error and random coe�cient, in this case, M = ✓(a2 � p), where ✓ is

random coe�cient.

a3: if actual talk spurt end at a3, Optimization Model keeps padding to f3 = O +M . M is

generated by prediction error and random coe�cient, in this case, M = ✓(a3 � p), where ✓ is

random coe�cient.

Situation2: talk spurt optimization and optimal value O is less than predicted value P . As

Figure 4.7 shows, with O and P given, actual talk spurt could end in following three place: a1:

less than both O and P ; a2: grater than O and less than P ; a3: grater than both O and P .

a1: if actual talk spurt end at a1, the optimization model will hold packets in bu↵er as long as

possible and start to drop packets at a1. To minimize e↵ect of prediction error and add ran-

domness to the optimal value, optimization model will generate makeup value M = ✓(p� a1),

where ✓ is random coe�cient. So final optimal value for this situation is f1 = O � ✓(p� a1).

a2: if actual talk spurt end at a2, the optimization model will hold packets in bu↵er as long as

possible and start to drop packets at a2. To minimize e↵ect of prediction error and add ran-

domness to the optimal value, optimization model will generate makeup value M = ✓(p� a2),

where ✓ is random coe�cient. So final optimal value for this situation is f2 = O � ✓(p� a2).

a3: if actual talk spurt end at a1, the optimization model will hold packets in bu↵er as long as

possible and start to drop packets at a3. To minimize e↵ect of prediction error and add ran-

domness to the optimal value, optimization model will generate makeup value M = ✓(a3� p),

where ✓ is random coe�cient. So final optimal value for this situation is f3 = O � ✓(a3� p).
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Situation3: silence gap optimization and optimal value O is grater than or equal to predicted

value P . As Figure 4.8 shows, with O and P given, actual silence gap could end in following

three place: a1: less than both O and P ; a2: grater than P and less than O; a3: grater than

both O and P .

a1:If actual silence gap end at a1, the optimization model will hold packets as long as possible

and start to drop packets at a1. To minimize e↵ect of prediction error and add randomness to

the optimal value, optimization model will generate makeup value M = ✓(p � a1), where ✓ is

random coe�cient. So final optimal value for this situation is f1 = O � ✓(p� a1).

a2:If actual silence gap end at a2, the optimization model will hold packets as long as possible

and start to drop packets at a2. To minimize e↵ect of prediction error and add randomness to

the optimal value, optimization model will generate makeup value M = ✓(p � a2), where ✓ is

random coe�cient. So final optimal value for this situation is f2 = O + ✓(p� a2).

a3:If actual silence gap end at a3, the optimization model will hold packets as long as possible

and start to drop packets at a3. To minimize e↵ect of prediction error and add randomness to

the optimal value, optimization model will generate makeup value M = ✓(a3 � p), where ✓ is

random coe�cient. So final optimal value for this situation is f3 = O + ✓(a3� p).

Situation4: silence gap optimization and optimal value O is less than predicted value P . As

Figure 4.9 shows, with O and P given, actual silence gap could end in following three place:

a1: less than both O and P ; a2: grater than O and less than P ; a3: grater than both O and

P .

a1:If actual silence gap end at a1, the optimization model adds dummy packets to f1 = O�M .

M is generated by prediction error and random coe�cient, in this case, M = ✓(p� a1), where

✓ is random coe�cient.

a2:f actual silence gap end at a2, the optimization model adds dummy packets to f2 = O�M .

M is generated by prediction error and random coe�cient, in this case, M = ✓(p� a2), where

✓ is random coe�cient.

a3:If actual silence gap end at a3, the optimization model adds dummy packets to f3 = O+M .

M is generated by prediction error and random coe�cient, in this case, M = ✓(a3� p), where

✓ is random coe�cient.
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Figure 4.6: Situation 1

Figure 4.7: Situation 2

Summarize above situations, we can formally define these 4 algorithms:

yo,t
j

� xp,t
j

: In this case, yo,t
j

, the optimal length of the talk spurt from the previous step, is

greater than or equal to xp,t
j

, the predicted length of the talk spurt from the prediction step. The

compensation will be determined as follows: The prediction error is calculated as the di↵erence

between xp,t
j

, the predicted length of the jth talk spurt, and xt
j

, the actual length of the jth

talk spurt. The compensation M is ✓ times the prediction error and ✓ is a random number.

The random number ✓ is added to mitigate replay attacks and a di↵erent random number will

be generated for each talk spurt or silence gap. The length of the talk spurt in the output

tra�c is determined based on the optimal length of the talk spurt and the compensation. The

pseudo-code of the compensation in this case is shown in Algorithm 1.

yo,t
j

< xp,t
j

: In this case, yo,t
j

, the optimal length of the talk spurt from the previous step, is less

than xp,t
j

, the predicted length of the talk spurt from the prediction step. The compensation

will be determined as follows: The prediction error is calculated as the di↵erence between xp,t
j

,

the predicted length of the jth talk spurt, and xt
j

, the actual length of the jth talk spurt.

The compensation M is ✓ times the prediction error and ✓ is a random number. The random

number ✓ is added to mitigate replay attacks and a di↵erent random number will be generated

for each talk spurt or silence gap. The length of the talk spurt in the output tra�c is determined
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Algorithm 1: Compensation in Case yo,t
j

� xp,t
j

Data: xt
j

: the actual length of the jth talk spurt

yo,t
j

: the optimal length of the jth talk spurt

xp,t
j

: the predicted length of the jth talk spurt
⌧ : packetization delay
t
j

: the end of the jth talk spurt
t � t

j

;
generate a random number ✓ between 0 and ✓

max

;

if xt
j

 xp,t
j

then

M  � ✓(xp,t
j

� xt
j

);

while the add rate of dummy packets is less than lim
add

do
t � t+ ⌧ ;

if t < yo,t
j

�M then

add a dummy packet at t;
else

break;
end

end

else

M  � ✓(xt
j

� xp,t
j

);

while the add rate of dummy packets is less than lim
add

do
t � t+ ⌧ ;

if t < yo,t
j

+M then

add a dummy packet at t;
else

break;
end

end

end



www.manaraa.com

21

Figure 4.8: Situation 3

Figure 4.9: Situation 4

based on the optimal length of the talk spurt and the compensation. The pseudo-code of the

compensation in this case is shown in Algorithm 2.

yo,s
j

� xp,s
j

: In this case, yo,s
j

, the optimal length of the silence gap from the previous step,

is greater than or equal to xp,s
j

, the predicted length of the silence gap from the prediction

step. The compensation will be determined as follows: The prediction error is calculated as

the di↵erence between xp,s
j

, the predicted length of the jth silence gap, and xs
j

, the actual

length of the jth silence gap. The compensation M is ✓ times the prediction error and ✓ is

a random number. The random number ✓ is added to mitigate replay attacks and a di↵erent

random number will be generated for each talk spurt or silence gap. The length of the talk

spurt in the output tra�c is determined based on the optimal length of the talk spurt and the

compensation. The pseudo-code of the compensation in this case is shown in Algorithm 3.

yo,s
j

< xp,s
j

: In this case, yo,s
j

, the optimal length of the silence gap from the previous step, is less

than xp,s
j

, the predicted length of the silence gap from the prediction step. The compensation

will be determined as follows: The prediction error is calculated as the di↵erence between xp,s
j

,

the predicted length of the jth silence gap, and xs
j

, the actual length of the jth silence gap.

The compensation M is ✓ times the prediction error and ✓ is a random number. The random

number ✓ is added to mitigate replay attacks and a di↵erent random number will be generated
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Algorithm 2: Compensation in Case yo,t
j

< xp,t
j

Data: xt
j

: the actual length of the jth talk spurt

yo,t
j

: the optimal length of the jth talk spurt

xp,t
j

: the predicted length of the jth talk spurt
⌧ : packetization delay
t
j

: the end of the jth talk spurt
t � t

j

;
generate a random number ✓ between 0 and ✓

max

;

if xt
j

 yo,t
j

then

M  � ✓(xp,t
j

� xt
j

);

while the drop rate of actual packets is less than lim
drop

do
t � t+ ⌧ ;

if t < yo,t
j

�M then

drop actual packets at t;
else

break;
end

end

else

M  � ✓(xt
j

� xp,t
j

);

while the drop rate of actual packets is less than lim
drop

do
t � t+ ⌧ ;

if t < yo,t
j

�M then

drop actual packets at t;
else

break;
end

end

end
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Algorithm 3: Compensation in Case yo,s
j

� xp,s
j

Data: xs
j

: the actual length of the jth silence gap
yo,s
j

: the optimal length of the jth silence gap
xp,s
j

: the predicted length of the jth silence gap
⌧ : packetization delay
s
j

: the end of the jth silence gap
t � t

j

;
generate a random number ✓ between 0 and ✓

max

;
switch xs

j

do

case xs
j

 xp,s
j

M  � ✓(xp,s
j

� xs
j

);

while the drop rate of actual packets is less than lim
drop

do
t � t+ ⌧ ;
if t < yo,s

j

�M then

drop actual packet at t;
else

break;
end

end

end
case xs

j

> xp,s
j

and xs
j

 yo,s
j

M  � ✓(xp,s
j

� xs
j

);

while the drop rate of actual packets is less than lim
drop

do
t � t+ ⌧ ;
if t < yo,s

j

+M then

drop actual packet at t;
else

break;
end

end

end
case xs

j

> yo,s
j

M  � ✓(xs
j

� xp,s
j

);

while the drop rate of actual packets is less than lim
drop

do
t � t+ ⌧ ;

if t < yo,t
j

+M then

drop actual packet at t;
else

break;
end

end

end

endsw
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for each talk spurt or silence gap. The length of the talk spurt in the output tra�c is determined

based on the optimal length of the talk spurt and the compensation. The pseudo-code of the

compensation in this case is shown in Algorithm 4.

Algorithm 4: Compensation in Case yo,s
j

< xp,s
j

Data: xs
j

: the actual length of the jth silence gap
yo,s
j

: the optimal length of the jth silence gap
xp,s
j

: the predicted length of the jth silence gap
⌧ : packetization delay
t
j

: the end of the jth silence gap
t � t

j

;
generate a random number ✓ between 0 and ✓

max

;
if xs

j

 yo,s
j

then

M  � ✓(xp,s
j

� xs
j

);

while the add rate of dummy packets is less than lim
add

do
t � t+ ⌧ ;
if t < yo,s

j

�M then

add dummy packets at t;
else

break;
end

end

else
M  � ✓(xs

j

� xp,s
j

);

while the add rate of dummy packets is less than lim
add

do
t � t+ ⌧ ;
if t < yo,s

j

+M then

add dummy packets at t;
else

break;
end

end

end
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CHAPTER 5. EXPERIMENT AND RESULT

In this chapter, we evaluate the performance of the pattern hiding module. The evaluation

is on the e↵ectiveness of pattern hiding and resistance to replay attacks.

5.1 Experiment Setup

In order to get natural audio traces for our experiment, we set up the experiment as Figure

5.1. Basically, we collect 40 speeches from YouTube.com for the experiment. The length of

the speeches is between 10 and 15 minutes. We feed the speeches to the X-Lite 3.0 VoIP client

software. Detail shows follow:

1. Software

In our experiment, we use two machines (a data collection machine(Computer1) and a

support machine(Computer2)) which both installed X-Lite 3.0 for the network commu-

nication. We also installed Wireshark 1.12.2 on the data collection machine that use for

catch the packets.

X-Lite 3.0: is used as VoIP software that send audio packet from a computer to

another computer. For the codec part, we choose the µlaw codec in X-Lite to covert the

speeches into VoIP packets due to the popularity of the µlaw codec.

Wiresharks 1.12.2: is used for collect packet between above two computers.

2. SIP Account

In this experiment, we used same network communication tool in two di↵erent machines

with two SIP Account: jlfang@sip2sip.info and jlfang@iptel.org.
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3. Data Collection

After we setup the two X-Lite on both data collection and support machines, we made

a call from the data collection machine to the support machine and at the same time,

we run the data collection software: Wireshark on the data collection machine. Then we

play speeches h that we collected from Youtube.com. Picture ?? is the picture for part

of data we collected. From this picture, we can easily identify the packet number, packet

send time, source, destination, protocol and other specific data information.

4. Data Analysis After we collected data from Wireshark 1.12.2, we import these data into

Microsoft Excel for further analysis. In this analysis, we mostly focused on the time

interval between two packets in di↵erent situation: talk and silence, which related to our

research information: talk spurt and silence gap.

Figure 5.1: Data Collection Mode

5.2 Performance Metrics

We use DTW correlation, a correlation metric based on the Dynamic Time Warping (DTW)

algorithm to evaluate the hiding performance. We do not use Pearson’s correlation defined in

(4.1) because silence gaps may be covered by dummy packets and talk spurts may be removed

through packet drops. The “missing” data can significantly reduce Pearson’s correlation and

an adversary has no idea on the location of the “missing” talk spurts and silence gaps because

the adversary has no access to content of encrypted VoIP packets.

A classical approach to measure similarity between two time series of di↵erent length is the

DTW algorithm, which has been used in various tra�c analysis research topics such as website
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fingerprinting [7] and denial of service (DoS) attack detection [10]. In this research project, we

use the DTW algorithm to find the best alignment of the on-o↵ pattern in the input tra�c

and the on-o↵ pattern in the output tra�c. The DTW correlation is calculated as Pearson’s

correlation of the aligned on-o↵ patterns in the input tra�c and in the output tra�c. As shown

in Figure 5.2.(a), the two on-o↵ patterns, represented by X = [x1, x2, · · · , xi, · · · , xm] and

Y = [y1, y2, · · · , yj , · · · , yn] respectively, are of di↵erent length. The DTW algorithm find the

best alignment function f(i) = j where i and j are the indexes of theX and Y vectors. The best

alignment minimizes the distance between the two vectors defined as Dist =
P

m

i=1 |xi � y
f(i)|.

Usually the dynamic programming is used to minimize the distance. Figure 5.2.(b) shows the

aligned vectors.

(a) Original Patterns (b) Warped Patterns

Figure 5.2: Pattern Alignment with DTW

5.3 Pattern Hiding Performance

Figure 5.3 shows the hiding performance with various rate limits on dummy packets (lim
add

).

We have the following observation from these experiments:

1. When lim
add

, the rate limit on adding dummy packets, increases, the DTW correlation

decreases. The trend is expected as more dummy packets can fill more silence gaps and

in turn hide tra�c patterns more e↵ectively.
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2. The two curves in Figure 5.3 are close to each other. It means:

(a) For the same rate limit on dummy packets (lim
add

), the 5% increase in the limit of

drop rate (lim
drop

) and 100ms increase in the delay limit (lim
delay

) can only slightly

improve the hiding performance.

(b) The hiding performance changes significantly with the rate limit on dummy packets

(lim
add

). From our experiment data, we also observe that the actual dummy packet

rate is much lower than the limit lim
add

. For example, a typical actual dummy

packet rate is 42%.46 when lim
add

is 100%. The limit lim
add

is not fully utilized as

the optimization solutions may not lie at the constraint boundaries.

Figure 5.3: Limit on Adding Dummy Packets (lim
add

)

Figure 5.4 shows hiding performance under various limits on packet drop rate (lim
drop

).

We have the following observation from these experiments:
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1. The DTW correlation decreases when the limit on the drop rate increases. It is because

more packet drops can also lead to better pattern hiding.

2. When the limit lim
drop

approaches 100%, the DTW correlation is still close to 0.7. We

checked the experiment data and found that the typical drop rate was 43.52%, still far

far from 100% when the limit lim
drop

was 100%. It is because the optimization solutions

may not occur at the constraint boundaries. For VoIP communications, a large drop rate

causes significant QoS degradation and conversations may not be able to continue. So in

the following experiments, we limit the drop rate within 5%.

Figure 5.4: Limit on Packet Drop Rate (lim
drop

)

Figure 5.5 shows hiding performance with various delay limits on VoIP packets. We have

the following observation from these experiments:



www.manaraa.com

30

1. The hiding performance improves when the delay limit increases. It is consistent with

our intuition as a larger delay limit gives the optimization module more flexibility in

scheduling VoIP packets to optimize the pattern hiding.

2. We can also observe that when the rate limit on dummy packets is 20% and the limit

on the drop rate are 5%, the pattern hiding performance does not improve significantly

when the delay limit increases.

Figure 5.5: Limit on Packet Delay lim
delay

5.4 Resistance to Replay Attacks

In this set of experiments, we replay the same speech to the pattern hiding module. The goal

of the replay attacks is to find out the output tra�c traces that are generated from the same

speech. The resistance to the replay attacks is evaluated with the detection rate, defined as the



www.manaraa.com

31

ratio of the correct detections to the number of attempts. In each attempt, the candidate pool

has one trace generated from the same speech as the trace of interest and 19 traces generated

from other speeches. So a random guess results in a detection rate of 1
19 .

Figure 5.6 shows the detection rate with various limits on the dummy packets, packet drop

rate, and packet delay. We make the following observations from the experiment results:

1. In both curves, the detection rate decreases when the limit on the dummy packet rate

(lim
add

) increases. When lim
add

= 100%, lim
drop

= 5%, andlim
delay

= 100ms, the detec-

tion rate reaches 24%, close to the detection rate of a random guess.

2. A increase of lim
drop

from 0 to 5% and a increase of lim
delay

from 0ms to 100ms can

bring down the detection rates by around 5% when lim
add

� 20%.

Figure 5.6: Di↵erent Application Performance
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CHAPTER 6. CONCLUSION AND DISCUSSION

In this section, we discuss the optimization step, the experiments, and extension of the

hiding approach.

We use Pearson’s correlation in the optimization step and use the DTW correlation in eval-

uating the hiding approach. We choose Pearson’s correlation instead of the DTW correlation

in the optimization step because of the following two reasons:

1. The DTW correlation also contains an optimization process that finds the best alignment

of the input tra�c pattern and the output tra�c pattern. Usually dynamic programming

is used for the optimization. So the optimization process is time-consuming and it is not

suitable for the online optimization required by the hiding approach.

2. The optimization based on Pearson’s correlation has closed-form solutions. So the op-

timization can be finished in 5ms, which is much shorter than even the packetization

delay of VoIP packets. As we explain in the previous section, Pearson’s correlation can

not be used for evaluation as talk spurts and silence gaps can be removed by the hiding

approach.

We evaluate the e↵ectiveness of the hiding approach on its resistance to replay attacks.

Essentially the replay attack is equivalent to the speech identification, which aims to identify

tra�c traces generated from the same speech. In our future work, we plan to evaluate the

e↵ectiveness of the pattern hiding approach with other identification tasks such as speaker

identification and language identification. We choose speech identification in this paper because

the speech identification can achieve much higher identification rates than other identification

tasks when no pattern hiding approach is in use.
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CHAPTER 7. SUMMARY AND FUTURE WORK

7.1 Summary

Considering the threat of VoIP attackers, and inspired by the work of researchers on VoIP

tra�c pattern recognition, we propose a pattern hiding approach to mitigate tra�c analysis at-

tacks on VoIP communications. The approach hides tra�c patterns by adding dummy packets,

dropping VoIP packets, and delaying VoIP packets. The approach optimizes pattern hiding in

terms of dissimilarity from the original tra�c pattern and the optimization is under constraints

on dummy packet rate, VoIP packet drop rate, and VoIP packet delay. Our contributions to

the field of voice pattern hiding for VoIP communications are as follows:

• A adversary behavior model which lunches tra�c analysis attacks.

• New pattern hiding module that are able to hide voice tra�c pattern in Internet.

• New measuring method that used to measure the e↵ectiveness in countering tra�c anal-

ysis attacks.

In Chapter 2, we included a literature survey of existing researches on Internet and VoIP

communication security to show their advantages and defect. Consequently, we summarized

their common defect as follows: unable to prevent timing-based tra�c analysis attack.

In Chapter 3, we defined the problem statement and our assumption. So we normalized the

behavior of adversary and our pattern hiding module.

In Chapter 4, we formally proposed our pattern hiding module. Our pattern hiding module

has 3 steps: prediction step, optimization step and compensation step. Prediction step provide

forecast value of talk spurts and silence gap which will be used in later optimization step.

Optimization step provide optimal value which minimized the correlation between original
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time series and new time series and then pass it to compensation step. Compensation step

modify the optimal value based on constrain and give the final value and position of packets

that will be output to the Internet.

In Chapter 5, we set up a series of experiments and analyzed the experiment result. First,

we collect 40 audio traces from Youtube.com then we set up four experiment based on these

traces, which used to test di↵erent module function. For the first three experiments, we test

the following methods: add dummy packets, drop original packets and delay original packets.

Experiment result shows that all these methods are able to decrease the correlation between

new times series and original time series just like our hypothesis. The fourth experiment, we

designed to test our pattern hiding module’s resistance to relay attacks. The experiment result

shows that, with appropriate constraint, our module has very high resistance to these attackers

who even knows our module design theory and structure.

In Chapter 6, we discussed our optimization step, experiments and extension of the hiding

approach. First, we explained why we used two di↵erent correlation techniques in the module.

Then we evaluated the experiment result and e↵ectiveness on relay attacks: our experiments

show the hiding approach can e↵ectively hide tra�c patterns and resist replay attacks to identify

the same speech.

7.2 Future Work

In this thesis, we focus on hiding the on-o↵ pattern in VoIP communications. We believe

the approach can also be extended to hide tra�c patterns in other communications with various

QoS requirements. The approach can also be more e↵ective for delay-tolerant communications

such as email and ftp because of the removal of the delay constraints. We plan to work on the

extension in our future work.
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APPENDIX . SOLUTION OF THE OPTIMIZATION PROBLEM

The objective function (4.2) can be simplified as follows:
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To find the critical point, we solve the equation D0(yo,s
j

) = 0. So the critical point is

yo,s
j

= 2ea�bd

2bc�ad

.

To find out whether the minimum occurs at the critical point, we calculate the second

derivative of D(yo,s
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) as follows:
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So if D00(yo,s
j

) > 0 when yo,s
j

= 2ea�bd

2bc�ad

, the minimum occurs at the critical point. Otherwise

the minimum occurs at the end points defined by the constraints.
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